lunes, 2 de marzo de 2009

1 − 2 + 3 − 4 + · · ·

La expresión, 1 − 2 + 3 − 4 + · · · es una serie infinita cuyos términos son los números enteros positivos, que van alternando sus signos. Utilizando notación matemática para sumatorias, la suma de los primeros m términos de la serie se expresa como:

\sum_{n=1}^m n(-1)^{n-1}

Es una serie divergente, en el sentido que la sucesión de sus sumas parciales (1, −1, 2, −2, …) no tiende a ningún límite finito. En forma equivalente se dice que 1 − 2 + 3 − 4 + · · · no posee suma.

Sin embargo, a mediados del siglo XVIII, Leonhard Euler descubre la siguiente relación calificándola de paradójica:

1-2+3-4+\cdots=\frac14

Hacia comienzos de la década de 1890, Ernesto Cesàro y Émile Borel entre otros, investigaron métodos bien definidos para encontrar sumas generalizadas de las series divergentes – incluyendo nuevas interpretaciones de los intentos realizados por Euler. Muchos de estos métodos denominados de sumación le asignan a (1 − 2 + 3 − 4 + · · ·) una "suma" de 14. El método de suma de Cesàro es uno de los pocos métodos que no suma la serie 1 − 2 + 3 − 4 + · · ·, por lo que esta serie es un ejemplo de un caso donde debe utilizarse un método más robusto como por ejemplo el método de suma de Abel.

La serie 1 − 2 + 3 − 4 + · · · se encuentra relacionada con la serie de Grandi 1 − 1 + 1 − 1 + · · ·. Euler analizó estas dos series como casos especiales de (1 − 2n + 3n − 4n + · · ·) para valores de n arbitrarios, una línea de investigación que extiende su contribución al problema de Basilea y conduce a las ecuaciones funcionales de lo que conocemos hoy como la función eta de Dirichlet y la función zeta de Riemann.

0 comentarios: